国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術(shù)文章
文章詳情頁

關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解

瀏覽:143日期:2022-06-24 13:25:12

Plotly Express是對(duì) Plotly.py 的高級(jí)封裝,內(nèi)置了大量實(shí)用、現(xiàn)代的繪圖模板,用戶只需調(diào)用簡(jiǎn)單的API函數(shù),即可快速生成漂亮的互動(dòng)圖表,可滿足90%以上的應(yīng)用場(chǎng)景。

本文借助Plotly Express提供的幾個(gè)樣例庫進(jìn)行散點(diǎn)圖、折線圖、餅圖、柱狀圖、氣泡圖、桑基圖、玫瑰環(huán)圖、堆積圖、二維面積圖、甘特圖等基本圖形的實(shí)現(xiàn)。

代碼示例

import plotly.express as pxdf = px.data.iris()#Index([’sepal_length’, ’sepal_width’, ’petal_length’, ’petal_width’, ’species’,’species_id’],dtype=’object’)# sepal_length sepal_width ... species species_id# 0 5.1 3.5 ... setosa 1# 1 4.9 3.0 ... setosa 1# 2 4.7 3.2 ... setosa 1# .. ... ... ... ... ...# 149 5.9 3.0 ... virginica 3# plotly.express.scatter(data_frame=None, x=None, y=None, # color=None, symbol=None, size=None,# hover_name=None, hover_data=None, custom_data=None, text=None,# facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None,# error_x=None, error_x_minus=None, error_y=None, error_y_minus=None,# animation_frame=None, animation_group=None,# category_orders=None, labels=None, orientation=None,# color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, # range_color=None, color_continuous_midpoint=None,# symbol_sequence=None, symbol_map=None, opacity=None, # size_max=None, marginal_x=None, marginal_y=None,# trendline=None, trendline_color_override=None, # log_x=False, log_y=False, range_x=None, range_y=None,# render_mode=’auto’, title=None, template=None, width=None, height=None)# 以sepal_width,sepal_length制作標(biāo)準(zhǔn)散點(diǎn)圖fig = px.scatter(df, x='sepal_width', y='sepal_length')fig.show() #以鳶尾花類型-species作為不同顏色區(qū)分標(biāo)志 colorfig = px.scatter(df, x='sepal_width', y='sepal_length', color='species')fig.show() #追加petal_length作為散點(diǎn)大小,變位氣泡圖 sizefig = px.scatter(df, x='sepal_width', y='sepal_length', color='species',size=’petal_length’)fig.show() #追加petal_width作為額外列,在懸停工具提示中顯示為額外數(shù)據(jù) hover_datafig = px.scatter(df, x='sepal_width', y='sepal_length', color='species', size=’petal_length’, hover_data=[’petal_width’])fig.show() #以鳶尾花類型-species區(qū)分散點(diǎn)的形狀 symbolfig = px.scatter(df, x='sepal_width', y='sepal_length', symbol='species' ,color='species', size=’petal_length’, hover_data=[’petal_width’])fig.show() #追加petal_width作為額外列,在懸停工具提示中以粗體顯示。 hover_namefig = px.scatter(df, x='sepal_width', y='sepal_length', symbol='species' ,color='species', size=’petal_length’, hover_data=[’petal_width’], hover_name='species')fig.show() #以鳶尾花類型編碼-species_id作為散點(diǎn)的文本值 textfig = px.scatter(df, x='sepal_width', y='sepal_length', symbol='species' ,color='species', size=’petal_length’, hover_data=[’petal_width’], hover_name='species', text='species_id')fig.show() #追加圖表標(biāo)題 titlefig = px.scatter(df, x='sepal_width', y='sepal_length', symbol='species' ,color='species', size=’petal_length’, hover_data=[’petal_width’], hover_name='species', text='species_id',title='鳶尾花分類展示')fig.show() #以鳶尾花類型-species作為動(dòng)畫播放模式 animation_framefig = px.scatter(df, x='sepal_width', y='sepal_length', symbol='species' ,color='species', size=’petal_length’, hover_data=[’petal_width’], hover_name='species', text='species_id',title='鳶尾花分類展示', animation_frame='species')fig.show() #固定X、Y最大值最小值范圍range_x,range_y,防止動(dòng)畫播放時(shí)超出數(shù)值顯示fig = px.scatter(df, x='sepal_width', y='sepal_length', symbol='species' ,color='species', size=’petal_length’, hover_data=[’petal_width’], hover_name='species', text='species_id',title='鳶尾花分類展示', animation_frame='species',range_x=[1.5,4.5],range_y=[4,8.5])fig.show() df = px.data.gapminder().query('country==’China’')# Index([’country’, ’continent’, ’year’, ’lifeExp’, ’pop’, ’gdpPercap’, ’iso_alpha’, ’iso_num’],dtype=’object’)# country continent year ... gdpPercap iso_alpha iso_num# 288 China Asia 1952 ... 400.448611 CHN 156# 289 China Asia 1957 ... 575.987001 CHN 156# 290 China Asia 1962 ... 487.674018 CHN 156# plotly.express.line(data_frame=None, x=None, y=None, # line_group=None, color=None, line_dash=None,# hover_name=None, hover_data=None, custom_data=None, text=None,# facet_row=None, facet_col=None, facet_col_wrap=0, # facet_row_spacing=None, facet_col_spacing=None,# error_x=None, error_x_minus=None, error_y=None, error_y_minus=None,# animation_frame=None, animation_group=None,# category_orders=None, labels=None, orientation=None,# color_discrete_sequence=None, color_discrete_map=None,# line_dash_sequence=None, line_dash_map=None,# log_x=False, log_y=False,# range_x=None, range_y=None,# line_shape=None, render_mode=’auto’, title=None, # template=None, width=None, height=None)# 顯示中國(guó)的人均壽命fig = px.line(df, x='year', y='lifeExp', title=’中國(guó)人均壽命’)fig.show() # 以不同顏色顯示亞洲各國(guó)的人均壽命df = px.data.gapminder().query('continent == ’Asia’')fig = px.line(df, x='year', y='lifeExp', color='country',hover_name='country')fig.show() # line_group='country' 達(dá)到按國(guó)家去重的目的df = px.data.gapminder().query('continent != ’Asia’') # remove Asia for visibilityfig = px.line(df, x='year', y='lifeExp', color='continent', line_group='country', hover_name='country')fig.show() # bar圖df = px.data.gapminder().query('country == ’China’')fig = px.bar(df, x=’year’, y=’lifeExp’)fig.show() df = px.data.gapminder().query('continent == ’Asia’')fig = px.bar(df, x=’year’, y=’lifeExp’,color='country' )fig.show() df = px.data.gapminder().query('country == ’China’')fig = px.bar(df, x=’year’, y=’pop’, hover_data=[’lifeExp’, ’gdpPercap’], color=’lifeExp’, labels={’pop’:’population of China’}, height=400)fig.show() fig = px.bar(df, x=’year’, y=’pop’, hover_data=[’lifeExp’, ’gdpPercap’], color=’pop’, labels={’pop’:’population of China’}, height=400)fig.show() df = px.data.medals_long()# # nation medal count# # 0 South Korea gold 24# # 1 China gold 10# # 2 Canada gold 9# # 3 South Korea silver 13# # 4 China silver 15# # 5 Canada silver 12# # 6 South Korea bronze 11# # 7 China bronze 8# # 8 Canada bronze 12fig = px.bar(df, x='nation', y='count', color='medal', )fig.show() # 氣泡圖df = px.data.gapminder()# X軸以對(duì)數(shù)形式展現(xiàn)fig = px.scatter(df.query('year==2007'), x='gdpPercap', y='lifeExp', size='pop', color='continent',hover_name='country', log_x=True, size_max=60)fig.show() # X軸以標(biāo)準(zhǔn)形式展現(xiàn)fig = px.scatter(df.query('year==2007'), x='gdpPercap', y='lifeExp', size='pop', color='continent',hover_name='country', log_x=False, size_max=60)fig.show() # 餅狀圖px.data.gapminder().query('year == 2007').groupby(’continent’).count()# country year lifeExp pop gdpPercap iso_alpha iso_num# continent# Africa 52 52 52 52 52 52 52# Americas 25 25 25 25 25 25 25# Asia 33 33 33 33 33 33 33# Europe 30 30 30 30 30 30 30# Oceania 2 2 2 2 2 2 2df = px.data.gapminder().query('year == 2007').query('continent == ’Americas’')fig = px.pie(df, values=’pop’, names=’country’, title=’Population of European continent’)fig.show() df.loc[df[’pop’] < 10000000, ’country’] = ’Other countries’fig = px.pie(df, values=’pop’, names=’country’,title=’Population of European continent’, hover_name=’country’,labels=’country’)fig.update_traces(textposition=’inside’, textinfo=’percent+label’)fig.show() df.loc[df[’pop’] < 10000000, ’country’] = ’Other countries’fig = px.pie(df, values=’pop’, names=’country’,title=’Population of European continent’, hover_name=’country’,labels=’country’,color_discrete_sequence=px.colors.sequential.Blues)fig.update_traces(textposition=’inside’, textinfo=’percent+label’)fig.show() # 二維面積圖df = px.data.gapminder()fig = px.area(df, x='year', y='pop', color='continent',line_group='country')fig.show() fig = px.area(df, x='year', y='pop', color='continent',line_group='country', color_discrete_sequence=px.colors.sequential.Blues)fig.show() df = px.data.gapminder().query('year == 2007')fig = px.bar(df, x='pop', y='continent', orientation=’h’, hover_name=’country’, text=’country’,color=’continent’)fig.show() # 甘特圖import pandas as pddf = pd.DataFrame([ dict(Task='Job A', Start=’2009-01-01’, Finish=’2009-02-28’, Completion_pct=50, Resource='Alex'), dict(Task='Job B', Start=’2009-03-05’, Finish=’2009-04-15’, Completion_pct=25, Resource='Alex'), dict(Task='Job C', Start=’2009-02-20’, Finish=’2009-05-30’, Completion_pct=75, Resource='Max')])fig = px.timeline(df, x_start='Start', x_end='Finish', y='Task', color='Completion_pct')fig.update_yaxes(autorange='reversed')fig.show() fig = px.timeline(df, x_start='Start', x_end='Finish', y='Resource', color='Resource')fig.update_yaxes(autorange='reversed')fig.show() # 玫瑰環(huán)圖df = px.data.tips()# total_bill tip sex smoker day time size# 0 16.99 1.01 Female No Sun Dinner 2# 1 10.34 1.66 Male No Sun Dinner 3# 2 21.01 3.50 Male No Sun Dinner 3# 3 23.68 3.31 Male No Sun Dinner 2# 4 24.59 3.61 Female No Sun Dinner 4fig = px.sunburst(df, path=[’day’, ’time’, ’sex’], values=’total_bill’)fig.show() import numpy as npdf = px.data.gapminder().query('year == 2007')fig = px.sunburst(df, path=[’continent’, ’country’], values=’pop’, color=’lifeExp’, hover_data=[’iso_alpha’], color_continuous_scale=’RdBu’, color_continuous_midpoint=np.average(df[’lifeExp’], weights=df[’pop’]))fig.show() df = px.data.gapminder().query('year == 2007')fig = px.sunburst(df, path=[’continent’, ’country’], values=’pop’, color=’pop’, hover_data=[’iso_alpha’], color_continuous_scale=’RdBu’)fig.show() # treemap圖import numpy as npdf = px.data.gapminder().query('year == 2007')df['world'] = 'world' # in order to have a single root nodefig = px.treemap(df, path=[’world’, ’continent’, ’country’], values=’pop’, color=’lifeExp’, hover_data=[’iso_alpha’], color_continuous_scale=’RdBu’, color_continuous_midpoint=np.average(df[’lifeExp’], weights=df[’pop’]))fig.show() fig = px.treemap(df, path=[’world’, ’continent’, ’country’], values=’pop’, color=’pop’, hover_data=[’iso_alpha’], color_continuous_scale=’RdBu’, color_continuous_midpoint=np.average(df[’lifeExp’], weights=df[’pop’]))fig.show() fig = px.treemap(df, path=[’world’, ’continent’, ’country’], values=’pop’, color=’lifeExp’, hover_data=[’iso_alpha’], color_continuous_scale=’RdBu’)fig.show() fig = px.treemap(df, path=[ ’continent’, ’country’], values=’pop’, color=’lifeExp’, hover_data=[’iso_alpha’], color_continuous_scale=’RdBu’)fig.show() fig = px.treemap(df, path=[ ’country’], values=’pop’, color=’lifeExp’, hover_data=[’iso_alpha’], color_continuous_scale=’RdBu’)fig.show() # 桑基圖tips = px.data.tips()fig = px.parallel_categories(tips, color='size', color_continuous_scale=px.colors.sequential.Inferno)fig.show()

到此這篇關(guān)于關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解的文章就介紹到這了,更多相關(guān)Python plotly基本圖形內(nèi)容請(qǐng)搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 欧美一级xxx | 久久九九精品视频 | 免费看操片 | 国产成人精品综合 | 国产一区二区三区久久精品小说 | 免费三级网站 | 精品毛片 | 8888奇米四色在线 | 国产一级强片在线观看 | 在线免费一区二区 | 国产成人精品久久综合 | 国产欧美另类久久精品91 | 成年人黄视频在线观看 | 日本免费二区三区久久 | 欧美激情综合亚洲一二区 | 天天澡天天碰天天狠伊人五月 | 天堂资源8中文最新版在线 天堂最新版 | 亚洲黄a| 欧美牲 | 日韩美女网站 | 国产三级精品91三级在专区 | 伊人久久综合热青草 | 狠狠色丁香婷婷综合久久来 | 久久黄网站 | 18性欧美69 | a级毛片免费 | 久久色视频在线观看 | 日韩国产欧美一区二区三区 | 欧美一区二区三区免费不卡 | 国产成人综合手机在线播放 | 黄色a网 | 亚洲成a人片 | 精品国产一区二区三区国产馆 | 国产视频一二三 | 国产黄页 | 精品久久网站 | 国产丝袜不卡一区二区 | 国产精品合集一区二区 | 久久国产一级毛片一区二区 | 久草资源免费 | 久久手机免费视频 |