国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

Python集成學習之Blending算法詳解

瀏覽:3日期:2022-06-19 18:10:21
目錄一、前言二、Blending介紹三、Blending流程圖四、案例一、前言

普通機器學習:從訓練數據中學習一個假設。

集成方法:試圖構建一組假設并將它們組合起來,集成學習是一種機器學習范式,多個學習器被訓練來解決同一個問題。

集成方法分類為:

Bagging(并行訓練):隨機森林

Boosting(串行訓練):Adaboost; GBDT; XgBoost

Stacking:

Blending:

或者分類為串行集成方法和并行集成方法

1.串行模型:通過基礎模型之間的依賴,給錯誤分類樣本一個較大的權重來提升模型的性能。

2.并行模型的原理:利用基礎模型的獨立性,然后通過平均能夠較大地降低誤差

二、Blending介紹

訓練數據劃分為訓練和驗證集+新的訓練數據集和新的測試集

將訓練數據進行劃分,劃分之后的訓練數據一部分訓練基模型,一部分經模型預測后作為新的特征訓練元模型。測試數據同樣經過基模型預測,形成新的測試數據。最后,元模型對新的測試數據進行預測。Blending框架圖如下所示:注意:其是在stacking的基礎上加了劃分數據

三、Blending流程圖

Python集成學習之Blending算法詳解

第一步:將原始訓練數據劃分為訓練集和驗證集。 第二步:使用訓練集對訓練T個不同的模型。 第三步:使用T個基模型,對驗證集進行預測,結果作為新的訓練數據。 第四步:使用新的訓練數據,訓練一個元模型。 第五步:使用T個基模型,對測試數據進行預測,結果作為新的測試數據。 第六步:使用元模型對新的測試數據進行預測,得到最終結果。

Python集成學習之Blending算法詳解

四、案例

相關工具包加載

import numpy as npimport pandas as pd import matplotlib.pyplot as pltplt.style.use('ggplot')%matplotlib inlineimport seaborn as sns

創建數據

from sklearn import datasets from sklearn.datasets import make_blobsfrom sklearn.model_selection import train_test_splitdata, target = make_blobs(n_samples=10000, centers=2, random_state=1, cluster_std=1.0 )## 創建訓練集和測試集X_train1,X_test,y_train1,y_test = train_test_split(data, target, test_size=0.2, random_state=1)## 創建訓練集和驗證集X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3, random_state=1)print('The shape of training X:',X_train.shape)print('The shape of training y:',y_train.shape)print('The shape of test X:',X_test.shape)print('The shape of test y:',y_test.shape)print('The shape of validation X:',X_val.shape)print('The shape of validation y:',y_val.shape)

設置第一層分類器

from sklearn.svm import SVCfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.neighbors import KNeighborsClassifier

clfs = [SVC(probability=True),RandomForestClassifier(n_estimators=5,n_jobs=-1,criterion=’gini’),KNeighborsClassifier()]

設置第二層分類器

from sklearn.linear_model import LinearRegressionlr = LinearRegression()

第一層

val_features = np.zeros((X_val.shape[0],len(clfs)))test_features = np.zeros((X_test.shape[0],len(clfs)))

for i,clf in enumerate(clfs): clf.fit(X_train,y_train) val_feature = clf.predict_proba(X_val)[:,1] test_feature = clf.predict_proba(X_test)[:,1] val_features[:,i] = val_feature test_features[:,i] = test_feature

第二層

lr.fit(val_features,y_val)

輸出預測的結果

lr.fit(val_features,y_val)from sklearn.model_selection import cross_val_scorecross_val_score(lr,test_features,y_test,cv=5)

到此這篇關于Python集成學習之Blending算法詳解的文章就介紹到這了,更多相關Python Blending算法內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 日韩免费一级毛片 | 久久亚洲私人国产精品va | 色综合久久久高清综合久久久 | 日本三级网站在线线观看 | 美国一级做a一级视频 | 外国成人网在线观看免费视频 | 丝袜黄色片 | 亚洲成人777| 亚洲国产精品久久综合 | 国产免费网 | 国产成人精品视频一区二区不卡 | 日本 欧美 国产 | 亚洲男同可播放videos | 国产男女爽爽爽爽爽免费视频 | 成人欧美视频在线观看播放 | 国产精品国产三级国产an | aa国产| 色偷偷成人网免费视频男人的天堂 | 国产一区二区三区美女在线观看 | 97免费视频在线 | 欧美一级高清黄图片 | 一本色道久久综合亚洲精品高清 | 久久久精品一区二区三区 | 18成人免费观看网站入口 | 69视频成人| 免费a黄色| 国产国产人免费人成成免视频 | 国产国语对白一级毛片 | a毛片在线 | 免费公开视频人人人人人人人 | 狠狠se| 国产香蕉久久 | 国产90后美女露脸在线观看 | 久久久9视频在线观看 | 在线不卡一区二区三区日韩 | 一区二区精品在线 | 国产精品27页 | 一区二区三区四区产品乱码伦 | 五月久久亚洲七七综合中文网 | 九九免费精品视频 | 欧美精品hdvdeosex4k |