国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

python實(shí)現(xiàn)交并比IOU教程

瀏覽:2日期:2022-07-29 18:34:51

交并比(Intersection-over-Union,IoU),目標(biāo)檢測(cè)中使用的一個(gè)概念,是產(chǎn)生的候選框(candidate bound)與原標(biāo)記框(ground truth bound)的交疊率,即它們的交集與并集的比值。最理想情況是完全重疊,即比值為1。

python實(shí)現(xiàn)交并比IOU教程

計(jì)算公式:

python實(shí)現(xiàn)交并比IOU教程

Python實(shí)現(xiàn)代碼:

def cal_iou(box1, box2): ''' :param box1: = [xmin1, ymin1, xmax1, ymax1] :param box2: = [xmin2, ymin2, xmax2, ymax2] :return: ''' xmin1, ymin1, xmax1, ymax1 = box1 xmin2, ymin2, xmax2, ymax2 = box2 # 計(jì)算每個(gè)矩形的面積 s1 = (xmax1 - xmin1) * (ymax1 - ymin1) # C的面積 s2 = (xmax2 - xmin2) * (ymax2 - ymin2) # G的面積 # 計(jì)算相交矩形 xmin = max(xmin1, xmin2) ymin = max(ymin1, ymin2) xmax = min(xmax1, xmax2) ymax = min(ymax1, ymax2) w = max(0, xmax - xmin) h = max(0, ymax - ymin) area = w * h # C∩G的面積 iou = area / (s1 + s2 - area) return iou

# -*-coding: utf-8 -*-''' @Project: IOU @File : IOU.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2018-10-14 10:44:06'''def calIOU_V1(rec1, rec2): ''' computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU ''' # 計(jì)算每個(gè)矩形的面積 S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0 else: intersect = (right_line - left_line) * (bottom_line - top_line) return intersect/(sum_area - intersect) def calIOU_V2(rec1, rec2): ''' computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU ''' # cx1 = rec1[0] # cy1 = rec1[1] # cx2 = rec1[2] # cy2 = rec1[3] # gx1 = rec2[0] # gy1 = rec2[1] # gx2 = rec2[2] # gy2 = rec2[3] cx1,cy1,cx2,cy2=rec1 gx1,gy1,gx2,gy2=rec2 # 計(jì)算每個(gè)矩形的面積 S_rec1 = (cx2 - cx1) * (cy2 - cy1) # C的面積 S_rec2 = (gx2 - gx1) * (gy2 - gy1) # G的面積 # 計(jì)算相交矩形 x1 = max(cx1, gx1) y1 = max(cy1, gy1) x2 = min(cx2, gx2) y2 = min(cy2, gy2) w = max(0, x2 - x1) h = max(0, y2 - y1) area = w * h # C∩G的面積 iou = area / (S_rec1 + S_rec2 - area) return iou if __name__==’__main__’: rect1 = (661, 27, 679, 47) # (top, left, bottom, right) rect2 = (662, 27, 682, 47) iou1 = calIOU_V1(rect1, rect2) iou2 = calIOU_V2(rect1, rect2) print(iou1) print(iou2)

參考:https://www.jb51.net/article/184542.htm

補(bǔ)充知識(shí):Python計(jì)算多分類(lèi)的混淆矩陣,Precision、Recall、f1-score、mIOU等指標(biāo)

直接上代碼,一看很清楚

import osimport numpy as npfrom glob import globfrom collections import Counter def cal_confu_matrix(label, predict, class_num): confu_list = [] for i in range(class_num): c = Counter(predict[np.where(label == i)]) single_row = [] for j in range(class_num): single_row.append(c[j]) confu_list.append(single_row) return np.array(confu_list).astype(np.int32) def metrics(confu_mat_total, save_path=None): ’’’ :param confu_mat: 總的混淆矩陣 backgound:是否干掉背景 :return: txt寫(xiě)出混淆矩陣, precision,recall,IOU,f-score ’’’ class_num = confu_mat_total.shape[0] confu_mat = confu_mat_total.astype(np.float32) + 0.0001 col_sum = np.sum(confu_mat, axis=1) # 按行求和 raw_sum = np.sum(confu_mat, axis=0) # 每一列的數(shù)量 ’’’計(jì)算各類(lèi)面積比,以求OA值’’’ oa = 0 for i in range(class_num): oa = oa + confu_mat[i, i] oa = oa / confu_mat.sum() ’’’Kappa’’’ pe_fz = 0 for i in range(class_num): pe_fz += col_sum[i] * raw_sum[i] pe = pe_fz / (np.sum(confu_mat) * np.sum(confu_mat)) kappa = (oa - pe) / (1 - pe) # 將混淆矩陣寫(xiě)入excel中 TP = [] # 識(shí)別中每類(lèi)分類(lèi)正確的個(gè)數(shù) for i in range(class_num): TP.append(confu_mat[i, i]) # 計(jì)算f1-score TP = np.array(TP) FN = col_sum - TP FP = raw_sum - TP # 計(jì)算并寫(xiě)出precision,recall, f1-score,f1-m以及mIOU f1_m = [] iou_m = [] for i in range(class_num): # 寫(xiě)出f1-score f1 = TP[i] * 2 / (TP[i] * 2 + FP[i] + FN[i]) f1_m.append(f1) iou = TP[i] / (TP[i] + FP[i] + FN[i]) iou_m.append(iou) f1_m = np.array(f1_m) iou_m = np.array(iou_m) if save_path is not None: with open(save_path + ’accuracy.txt’, ’w’) as f: f.write(’OA:t%.4fn’ % (oa*100)) f.write(’kappa:t%.4fn’ % (kappa*100)) f.write(’mf1-score:t%.4fn’ % (np.mean(f1_m)*100)) f.write(’mIou:t%.4fn’ % (np.mean(iou_m)*100)) # 寫(xiě)出precision f.write(’precision:n’) for i in range(class_num): f.write(’%.4ft’ % (float(TP[i]/raw_sum[i])*100)) f.write(’n’) # 寫(xiě)出recall f.write(’recall:n’) for i in range(class_num): f.write(’%.4ft’ % (float(TP[i] / col_sum[i])*100)) f.write(’n’) # 寫(xiě)出f1-score f.write(’f1-score:n’) for i in range(class_num): f.write(’%.4ft’ % (float(f1_m[i])*100)) f.write(’n’) # 寫(xiě)出 IOU f.write(’Iou:n’) for i in range(class_num): f.write(’%.4ft’ % (float(iou_m[i])*100)) f.write(’n’)

以上這篇python實(shí)現(xiàn)交并比IOU教程就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持好吧啦網(wǎng)。

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 亚洲精品一区二区三区中文字幕 | 欧洲女同互慰在线视频 | 亚洲综合免费 | 日本a级片免费观看 | 成人高清毛片a | 成人午夜精品 | 91欧美视频 | 国产三级精品美女三级 | 国内免费自拍视频 | 久久精品免费观看 | 日本一级特黄在线播放 | 国产免费一级视频 | 全午夜免费一级毛片 | 高清不卡日本v在线二区 | www成人国产在线观看网站 | 国产日产高清欧美一区二区三区 | 女人张开腿等男人桶免费视频 | 夜夜爽影院| 久久狠狠躁免费观看2020 | 手机看片神马午夜片 | 国产精品一区二区三区四区五区 | 欧美日本在线一区二区三区 | 免费刺激视频 | 99亚洲自拍| 免费看特级毛片 | 久久手机视频 | 99精彩免费观看 | 亚洲bbbbbxxxxx精品三十七 | 成人在线免费观看视频 | 久久男人的天堂色偷偷 | 亚洲经典在线观看 | 国内精品自产拍在线观看91 | 欧美亚洲欧美区 | 欧美另类视频在线 | 一级做a爰性色毛片 | 亚洲久草 | 成人黄色在线视频 | 免费中文字幕在线 | 成人毛片免费网站 | 久久一区二区三区不卡 | 97在线观看免费视频 |