国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

詳解python中groupby函數通俗易懂

瀏覽:7日期:2022-07-25 15:45:08

一、groupby 能做什么?

python中groupby函數主要的作用是進行數據的分組以及分組后地組內運算!

對于數據的分組和分組運算主要是指groupby函數的應用,具體函數的規則如下:

df[](指輸出數據的結果屬性名稱).groupby([df[屬性],df[屬性])(指分類的屬性,數據的限定定語,可以有多個).mean()(對于數據的計算方式——函數名稱)

舉例如下:

print(df['評分'].groupby([df['地區'],df['類型']]).mean())#上面語句的功能是輸出表格所有數據中不同地區不同類型的評分數據平均值

二、單類分組

A.groupby('性別')

詳解python中groupby函數通俗易懂

首先,我們有一個變量A,數據類型是DataFrame

想要按照【性別】進行分組

得到的結果是一個Groupby對象,還沒有進行任何的運算。

describe()

描述組內數據的基本統計量

A.groupby('性別').describe().unstack()

詳解python中groupby函數通俗易懂

* 只有數字類型的列數據才會計算統計

* 示例里面數字類型的數據有兩列 【班級】和【身高】

但是,我們并不需要統計班級的均值等信息,只需要【身高】,所以做一下小的改動:

A.groupby('性別')['身高'].describe().unstack()

詳解python中groupby函數通俗易懂

unstack()

索引重排

上面的例子里面用到了一個小的技巧,讓運算結果更便于對比查看,感興趣的同學可以自行去除unstack,比較一下顯示的效果

三、多類分組

A.groupby( ['班級','性別'])

詳解python中groupby函數通俗易懂

單獨用groupby,我們得到的還是一個 Groupby 對象。

mean()

組內均值計算

DataFrame的很多函數可以直接運用到Groupby對象上。

詳解python中groupby函數通俗易懂

上圖截自 pandas 官網 document,這里就不一一細說。

我們還可以一次運用多個函數計算

A.groupby( ['班級','性別']).agg([np.sum, np.mean, np.std]) # 一次計算了三個

詳解python中groupby函數通俗易懂

agg()

分組多個運算

四、時間分組

時間序列可以直接作為index,或者有一列是時間序列,差別不是很大。

這里僅僅演示,某一列為時間序列。

為A 新增一列【生日】,由于分隔符 “/” 的問題,我們查看列屬性,【生日】的屬性并不是日期類型

詳解python中groupby函數通俗易懂

我們想做的是:

1、按照【生日】的【年份】進行分組,看看有多少人是同齡?

A['生日'] = pd.to_datetime(A['生日'],format ='%Y/%m/%d') # 轉化為時間格式A.groupby(A['生日'].apply(lambda x:x.year)).count() # 按照【生日】的【年份】分組

進一步,我們想選拔:

2、同一年作為一個小組,小組內生日靠前的那一位作為小隊長:

A.sort_values('生日', inplace=True) # 按時間排序A.groupby(A['生日'].apply(lambda x:x.year),as_index=False).first()

詳解python中groupby函數通俗易懂

as_index=False

保持原來的數據索引結果不變

first()

保留第一個數據

Tail(n=1)

保留最后n個數據

再進一步:

3、想要找到哪個月只有一個人過生日

A.groupby(A['生日'].apply(lambda x:x.month),as_index=False) # 到這里是按月分組A.groupby(A['生日'].apply(lambda x:x.month),as_index=False).filter(lambda x: len(x)==1)

詳解python中groupby函數通俗易懂

filter()

對分組進行過濾,保留滿足()條件的分組

以上就是 groupby 最經常用到的功能了。

用 first(),tail()截取每組前后幾個數據

用 apply()對每組進行(自定義)函數運算

用 filter()選取滿足特定條件的分組

到此這篇關于詳解python中groupby函數通俗易懂的文章就介紹到這了,更多相關python groupby函數內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 欧美操操操操 | 成人免费观看国产高清 | 99在线播放视频 | 我想看三级特黄 | 极品美女写真菠萝蜜视频 | 免费黄色欧美 | 日韩国产中文字幕 | 爱福利极品盛宴 | 欧美一级免费 | 手机看片日韩日韩韩 | 亚洲高清在线观看视频 | 国产免费怡红院视频 | 一区二三区国产 | 老人久久www免费人成看片 | 欧美成人性色xxxxx视频大 | 国产成人精品免费视频大 | 国产日韩线路一线路二 | 日韩欧美在线播放 | 黄色网址视频在线观看 | 91久久精品国产91久久性色tv | 中文字幕亚洲天堂 | 亚洲成av人片在线观看 | 亚洲精品tv久久久久 | 俄罗斯小屁孩cao大人免费 | 婷婷色九月综合激情丁香 | 日韩视频专区 | 国产精品久久久久久久久久久不卡 | aaa在线观看高清免费 | 毛色毛片免费观看 | 九九视频在线观看视频 | 性欧美videos精品 | 日本三级日产三级国产三级 | 国产欧美另类性视频 | 99精选视频 | 久草国产视频 | 三级黄色免费看 | 亚洲第5页 | 久久亚洲精品中文字幕第一区 | 窝窝午夜精品一区二区 | 亚洲欧美日韩国产综合 | 最新国产美女一区二区三区 |