国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

基于Python pyecharts實現多種圖例代碼解析

瀏覽:2日期:2022-07-14 15:21:39

詞云圖

from pyecharts.charts import WordClouddef word1(): words= [ ('Sam S Club', 10000), ('Macys', 6181), ('Amy Schumer', 4386), ('Jurassic World', 4055), ('Charter Communications', 2467), ('Chick Fil A', 2244), ('Planet Fitness', 1868), ('Pitch Perfect', 1484), ('Express', 1112), ('Home', 865), ('Johnny Depp', 847), ('Lena Dunham', 582), ('Lewis Hamilton', 555), ('KXAN', 550), ('Mary Ellen Mark', 462), ('Farrah Abraham', 366), ('Rita Ora', 360), ('Serena Williams', 282), ('NCAA baseball tournament', 273), ('Point Break', 265), ] worldcloud = ( WordCloud() .add('', words, word_size_range=[20, 100]) .set_global_opts(title_opts=opt.TitleOpts(title='WorldCloud-shape-diamond')) ) # worldcloud = ( # WordCloud() # .add('', words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) # .set_global_opts(title_opts=opt.TitleOpts(title='WorldCloud-shape-diamond')) # ) worldcloud.render('wordl.html') os.system('wordl.html')

效果如下:

基于Python pyecharts實現多種圖例代碼解析

散點圖

from pyecharts.charts import Scatterimport numpy as npdef sca(): x_data = np.linspace(0, 10, 30) y1_data = np.sin(x_data) y2_data = np.cos(x_data) # 繪制散點圖 # 設置圖表大小 figsise = opt.InitOpts(width='800px', height='600px') scatter = Scatter(init_opts=figsise) # 添加數據 scatter.add_xaxis(xaxis_data=x_data) scatter.add_yaxis(series_name='sin(x)散點圖', #名稱 y_axis=y1_data, # 數據 label_opts=opt.LabelOpts(is_show=False), # 數據不顯示 symbol_size=15, # 設置散點的大小 symbol='triangle' # 設置散點的形狀 ) scatter.add_yaxis(series_name='cos(x)散點圖', y_axis=y2_data, label_opts=opt.LabelOpts(is_show=False)) scatter.render() os.system('render.html')

效果如下:

基于Python pyecharts實現多種圖例代碼解析

餅狀圖

from pyecharts.charts import Piefrom pyecharts import options as optfrom pyecharts.faker import Faker as fadef pie1(): pie = ( Pie() .add('', [list(z) for z in zip(fa.choose(), fa.values())]) .set_global_opts(title_opts=opt.TitleOpts(title='pie-基本示例')) .set_series_opts(label_opts=opt.LabelOpts(formatter='{b}:{c}')) ) pie.render() os.system('render.html')def pie2(): pie = ( Pie() .add('', [list(z) for z in zip(fa.choose(), fa.values())], radius=['40%', '75%']) .set_global_opts(title_opts=opt.TitleOpts(title='pie-示例'), legend_opts=opt.LegendOpts( orient='vertical', pos_top='15%', pos_left='2%' )) .set_series_opts(label_opts=opt.LabelOpts(formatter='{b}:{c}')) ) pie.render() os.system('render.html')def pie3(): pie = ( Pie() .add('', [list(z) for z in zip(fa.choose(), fa.values())], radius=['40%', '75%'], center=['25%', '50%'], rosetype='radius', label_opts=opt.LabelOpts(is_show=False)) .add('', [list(z) for z in zip(fa.choose(), fa.values())], radius=['30%', '75%'], center=['75%', '50%'], rosetype='area') .set_global_opts(title_opts=opt.TitleOpts(title='pie-玫瑰圖示例')) ) pie.render() os.system('render.html')def pie4(): # 多餅圖顯示 pie = ( Pie() .add( '', [list(z) for z in zip(['劇情', '其他'], [25, 75])], center=['20%', '30%'], radius=[40, 60] ) .add( '', [list(z) for z in zip(['奇幻', '其他'], [24, 76])], center=['55%', ’30%’], radius=[40, 60] ) .add( '', [list(z) for z in zip(['愛情', '其他'], [14, 86])], center=['20%', '70%'], radius=[40, 60] ) .add( '', [list(z) for z in zip(['驚駭', '其他'], [1, 89])], center=['55%', '70%'], radius=[40, 60] ) .set_global_opts( title_opts=opt.TitleOpts(title='pie-多餅圖基本示例'), legend_opts=opt.LegendOpts(type_='scroll', pos_top='20%', pos_left='80%', orient='vertical' ) ) .set_series_opts(label_opts=opt.LabelOpts(formatter='{b}:{c}')) ) pie.render() os.system('render.html')

直方圖

from pyecharts.charts import Barfrom pyecharts import options as optfrom pyecharts.globals import ThemeTypefrom pyecharts.faker import Faker as faimport randomdef pye1(): # 生成隨機數據 attr = fa.days_attrs v1 = [random.randrange(10, 150) for _ in range(31)] v2 = [random.randrange(10, 150) for _ in range(31)] # 初始化一個Bar對象,并設定一寫初始化設置 bar = Bar(init_opts=opt.InitOpts(theme=ThemeType.WHITE)) # 添加數據 bar.add_xaxis(attr) # is_selected: 打開圖表時是否默認加載 grap:不同系列的柱間距離,百分比; color:指定柱狀圖Label的顏色 bar.add_yaxis('test1', v1, gap='0', category_gap='20%', color=fa.rand_color()) bar.add_yaxis('test2', v2, is_selected=False, gap='0%', category_gap='20%', color=fa.rand_color()) # 全局配置 # title_opts:圖標標題相關設置 # toolbox_opts: 工具欄相關設置 # yaxis_opts/xaxis_opts: 坐標軸相關設置 # axislabel_opts: 坐標軸簽字相關設置 # axisline_opts: 坐標軸軸線相關設置 # datazoom_opts: 坐標軸軸線相關設置 # markpoint_opts: 標記點相關設置 # markpoint_opts:label_opts=opts.LabelOpts(is_show=False) 標簽值是否疊加 # markline_opts:標記線相關設置 bar.set_global_opts(title_opts=opt.TitleOpts(title='主標題', subtitle='副標題'), toolbox_opts=opt.ToolboxOpts(), yaxis_opts=opt.AxisOpts(axislabel_opts=opt.LabelOpts(formatter='{value}/月'), name='這是y軸'), xaxis_opts=opt.AxisOpts( axisline_opts=opt.AxisLineOpts(linestyle_opts=opt.LineStyleOpts(color=’blue’)), name='這是x軸'), datazoom_opts=opt.DataZoomOpts() ) bar.set_series_opts(markpoint_opts=opt.MarkPointOpts(data=[opt.MarkPointItem(type_='max', name='最大值'),opt.MarkPointItem(type_='min', name='最小值'),opt.MarkPointItem(type_='average', name='平均值')]), markline_opts=opt.MarkLineOpts(data=[opt.MarkLineItem(type_='min', name='最小值'), opt.MarkLineItem(type_='max', name='最大值'), opt.MarkLineItem(type_='average', name='平均值')])) # 指定生成html文件路徑 bar.render(’test.html’) os.system('test.html')

效果如下

基于Python pyecharts實現多種圖例代碼解析

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 亚洲欧美日韩中文字幕在线一 | 精品视自拍视频在线观看 | 草草影院在线观看 | 亚洲加勒比在线 | 久久成人福利视频 | 一级毛片视频免费 | 国内精品久久久久久久亚洲 | 欧美日韩中文字幕在线视频 | 男人的天堂在线观看免费 | 久久精品国产一区二区三区 | 日本人在线看片 | 4四虎44虎www在线影院麻豆 | 成人黄激情免费视频 | 欧美国产综合日韩一区二区 | 国产成人精品高清在线 | 中国美女牲交一级毛片 | 免费99视频有精品视频高清 | 日韩一区二区精品久久高清 | 一国产一级淫片a免费播放口 | 欧美大片a一级毛片视频 | 性欧美久久 | 精品国产90后在线观看 | 怡红院自拍 | 国产2页| 新版天堂资源中文8在线 | 久久福利资源站免费观看i 久久高清精品 | 99精品视频一区在线观看miya | 99精品视频在线这里只有 | 中文字幕1区 | 大尺度福利视频奶水在线 | 中文字幕国产一区 | 国产精品高清视亚洲一区二区 | 中文字幕无线码中文字幕网站 | 国产美女视频黄a视频全免费网站 | 韩国毛片基地 | 亚洲a成人| 国产日韩欧美三级 | 国内精品久久久久久久久蜜桃 | 最新怡红院全部视频在线 | 国产亚洲福利精品一区二区 | 成年人www |