国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

Python Pandas數(shù)據(jù)分析工具用法實(shí)例

瀏覽:2日期:2022-07-06 11:57:24

1、介紹

Pandas是基于Numpy的專業(yè)數(shù)據(jù)分析工具,可以靈活高效的處理各種數(shù)據(jù)集,也是我們后期分析案例的神器。它提供了兩種類型的數(shù)據(jù)結(jié)構(gòu),分別是DataFrame和Series,我們可以簡(jiǎn)單粗暴的把DataFrame理解為Excel里面的一張表,而Series就是表中的某一列

2、創(chuàng)建DataFrame

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass test_stu = pandas.DataFrame( {’高數(shù)’: [66, 77, 88, 99, 85], ’大物’: [88, 77, 85, 78, 65], ’英語(yǔ)’: [99, 84, 87, 56, 75]}, ) print(test_stu) stu = pandas.DataFrame( {’高數(shù)’: [66, 77, 88, 99, 85], ’大物’: [88, 77, 85, 78, 65], ’英語(yǔ)’: [99, 84, 87, 56, 75]}, index=[’小紅’, ’小李’, ’小白’, ’小黑’, ’小青’] # 指定index索引 ) print(stu)

運(yùn)行

高數(shù) 大物 英語(yǔ)0 66 88 991 77 77 842 88 85 873 99 78 564 85 65 75 高數(shù) 大物 英語(yǔ)小紅 66 88 99小李 77 77 84小白 88 85 87小黑 99 78 56小青 85 65 75

3、讀取CSV或Excel(.xlsx)進(jìn)行簡(jiǎn)單操作(增刪改查)

data.csv

Python Pandas數(shù)據(jù)分析工具用法實(shí)例

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass data = pandas.read_csv(’data.csv’, engine=’python’) # 使用python分析引擎讀取csv文件 print(data.head(5)) # 顯示前5行, print(data.tail(5)) # 顯示后5行 print(data) # 顯示所有數(shù)據(jù) print(data[’height’]) # 顯示height列 print(data[[’height’, ’weight’]]) # 顯示height和weight列 data.to_csv(’write.csv’) # 保存到csv文件 data.to_excel(’write.xlsx’) # 保存到xlsx文件 data.info() # 查看數(shù)據(jù)信息(總行數(shù),有無(wú)空缺數(shù)據(jù),類型) print(data.describe()) # (count非空值,mean均值、std標(biāo)準(zhǔn)差、min最小值、max最大值25%50%75%分位數(shù)。) data[’新增列’] = range(0, len(data)) # 類似字典直接添加即可 print(data) new_data = data.drop(’新增列’, axis=1, inplace=False) # 刪除列,如果inplace為True則在源數(shù)據(jù)刪除,返回None,否則返回新數(shù)據(jù),不改動(dòng)源數(shù)據(jù) print(new_data) data[’體重+身高’] = data[’height’] + data[’weight’] print(data) data[’remark’] = data[’remark’].str.replace(’to’, ’’) # 操作字符串 print(data[’remark’]) data[’birth’] = pandas.to_datetime(data[’birth’]) # 轉(zhuǎn)為日期類型 print(data[’birth’])

4、根據(jù)條件進(jìn)行篩選,截取

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass data = pandas.read_csv(’data.csv’, engine=’python’) # 使用python分析引擎讀取csv文件 a = data.iloc[:12, ] # 截取0-12行,列全截 # print(a) b = data.iloc[:, [1, 3]] # 行全截,列1,3 # print(b) c = data.iloc[0:12, 0:4] # 截取行0-12,列0-4 # print(c) d = data[’sex’] == 1 # 查看性別為1(男)的 # print(d) f = data.loc[data[’sex’] == 1, :] # 查看性別為1(男)的 # print(f) g = data.loc[:, [’weight’, ’height’]] # 選取身高體重 # print(g) h = data.loc[data[’height’].isin([166, 175]), :] # 選取身高166,175的數(shù)據(jù) # print(h) h1 = data.loc[data[’height’].isin([166, 175]), [’weight’, ’height’]] # 選取身高166,175的數(shù)據(jù) # print(h1) i = data[’height’].mean() # 均值 j = data[’height’].std() # 方差 k = data[’height’].median() # 中位數(shù) l = data[’height’].min() # 最小值 m = data[’height’].max() # 最大值 # print(i) # print(j) # print(k) # print(l) # print(m) n = data.loc[ (data[’height’] > data[’height’].mean()) & (data[’weight’] > data[’weight’].mean()), :] # 身高大于身高均值,且體重大于體重均值,不能用and要用&如果是或用| print(n)

5、清Nan數(shù)據(jù),去重,分組,合并

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass sheet1 = pandas.read_excel(’data.xlsx’, sheet_name=’Sheet1’) # 讀取sheet1 # print(sheet1) # print(’-------------------------’) sheet2 = pandas.read_excel(’data.xlsx’, sheet_name=’Sheet2’) # 讀取sheet2 # print(sheet2) # print(’-------------------------’) a = pandas.concat([sheet1, sheet2]) # 合并 # print(a) # print(’-------------------------’) b = a.dropna() # 刪除空數(shù)據(jù)nan,有nan的就刪除 # print(b) # print(’-------------------------’) b1 = a.dropna(subset=[’weight’]) # 刪除指定列的空數(shù)據(jù)nan # print(b1) # print(’-------------------------’) c = b.drop_duplicates() # 刪除重復(fù)數(shù)據(jù) # print(c) # print(’-------------------------’) d = b.drop_duplicates(subset=[’weight’]) # 刪除指定列的重復(fù)數(shù)據(jù) # print(d) # print(’-------------------------’) e = b.drop_duplicates(subset=[’weight’], keep=’last’) # 刪除指定列的重復(fù)數(shù)據(jù),保存最后一個(gè)相同數(shù)據(jù) # print(e) # print(’-------------------------’) f = a.sort_values([’weight’], ascending=False) # 從大到小排序weight # print(f) g = c.groupby([’sex’]).sum() # 根據(jù)sex分組,再求和 # print(g) g1 = c.groupby([’sex’], as_index=False).sum() # 根據(jù)sex分組,再求和,但sex不作為索引 # print(g1) g2 = c.groupby([’sex’, ’weight’]).sum() # 根據(jù)sex分組后再根據(jù)weight分組,再求和 # print(g2) h = pandas.cut(c[’weight’], bins=[80, 90, 100, 150, 200], ) # 根據(jù)區(qū)間分割體重 print(h) # print(’-------------------------’) c[’根據(jù)體重分割’] = h # 會(huì)有警告,未解決,但不影響結(jié)果 print(c)

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持好吧啦網(wǎng)。

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 免费久草视频 | 九色视频在线观看免费 | 亚洲综合区 | 久久免费在线视频 | 国产成人久久精品 | 一区二区三区视频免费 | 国产精品线在线精品 | 女人夜色黄网在线观看 | 中文字幕一区二区三区视频在线 | 一区二区三区免费高清视频 | 在线视频一区二区日韩国产 | 久久精品国产精品青草色艺 | 毛片基地看看成人免费 | 呦女亚洲一区精品 | 一级a做爰片欧欧美毛片4 | 99热久久国产精品一区 | 九九九热在线精品免费全部 | 国产欧美另类久久久品 | 国产日韩欧美在线一二三四 | 国产成人一区在线播放 | 一区免费在线观看 | 免费在线成人网 | 亚洲欧美日本国产综合在线 | 久久视频这里只有精品 | 欧美成人亚洲欧美成人 | 午夜一级成人 | 国产片18在线观看 | 亚洲三级在线观看 | 国产成人福利视频在线观看 | 国产啪精品视频网免费 | 黄色三级免费网站 | 日韩欧美一区二区在线 | www.亚洲日本| 色精品一区二区三区 | 男人天堂新地址 | 色综合久久一本首久久 | 美国一级毛片完整高清 | 性生活视频网 | 国产在线不卡免费播放 | 久久中文字幕亚洲精品最新 | 天堂免费在线视频 |