国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

python 使用OpenCV進行簡單的人像分割與合成

瀏覽:37日期:2022-06-28 15:33:28
實現思路

通過背景建模的方法,對源圖像中的動態人物前景進行分割,再將目標圖像作為背景,進行合成操作,獲得一個可用的合成影像。

實現步驟如下。

使用BackgroundSubtractorMOG2進行背景分割

BackgroundSubtractorMOG2是一個以高斯混合模型為基礎的背景前景分割算法,

混合高斯模型

python 使用OpenCV進行簡單的人像分割與合成

分布概率是K個高斯分布的和,每個高斯分布有屬于自己的 μμ 和 σσ 參數,以及對應的權重參數,權重值必須為正數,所有權重的和必須等于1,以確保公式給出數值是合理的概率密度值。換句話說如果我們把該公式對應的輸入空間合并起來,結果將等于1。

回到原算法,它的一個特點是它為每一個像素選擇一個合適數目的高斯分布。基于高斯模型的期望和標準差來判斷混合高斯模型模型中的哪個高斯模型更有可能對應這個像素點,如果不符合就會被判定為前景。

使用人像識別填充面部信息

創建級聯分類器

face_cascade = cv2.CascadeClassifier()face_cascade.load( ’/usr/local/anaconda3/envs/OpenCV/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_default.xml’)

使用OpenCV自帶的級聯分類器,加載OpenCV的基礎人像識別數據。

識別源圖像中的人像

faces = face_cascade.detectMultiScale(gray, 1.3, 5)使用形態學填充分割出來的前景

# 形態學開運算去噪點fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)for i in range(15): fgmask = cv2.dilate(fgmask, kernel, iterations=1)

通過開操作去掉前景圖像數組中的噪點,然后重復進行膨脹,填充前景輪廓。

將人像與目標背景進行合成

def resolve(o_img, mask, faces): if len(faces) == 0: return (x, y, w, h) = faces[0] rgb_mask_front = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) rgb_mask_front = cv2.bitwise_not(rgb_mask_front) cv2.circle(rgb_mask_front, (int(x + w / 2), int(y + h / 2)), int((w + h) / 4), (0, 0, 0), thickness=-1) o_img = cv2.subtract(o_img, rgb_mask_front) return o_img

將分割出來的部分取反再與源圖像進行減操作,相當于用一個Mask從原圖中摳出一部分。

再與背景進行加操作

out = resolve(frame, fgmask, faces)out = cv2.add(out, c_frame)代碼實現

import numpy as npimport cv2import os# 經典的測試視頻camera = cv2.VideoCapture(’./source/background_test2.avi’)cap = cv2.VideoCapture(’./source/camera_test2.avi’)face_cascade = cv2.CascadeClassifier()face_cascade.load( os.getcwd()+’/source/haarcascade_frontalface_default.xml’)# 形態學操作需要使用kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))# 創建混合高斯模型用于背景建模fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows=False)def resolve(o_img, mask, faces): if len(faces) == 0: return (x, y, w, h) = faces[0] rgb_mask_front = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) rgb_mask_front = cv2.bitwise_not(rgb_mask_front) cv2.circle(rgb_mask_front, (int(x + w / 2), int(y + h / 2)), int((w + h) / 4), (0, 0, 0), thickness=-1) o_img = cv2.subtract(o_img, rgb_mask_front) return o_imgwhile True: ret, frame = cap.read() c_ret, c_frame = camera.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) fgmask = fgbg.apply(frame) # 形態學開運算去噪點 fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) gray_camera = cv2.cvtColor(c_frame, cv2.COLOR_BGR2GRAY) for i in range(15): fgmask = cv2.dilate(fgmask, kernel, iterations=1) faces = face_cascade.detectMultiScale(gray, 1.3, 5) out = resolve(frame, fgmask, faces) out = cv2.add(out, c_frame) cv2.imshow(’Result’, out) cv2.imshow(’Mask’, fgmask) k = cv2.waitKey(150) & 0xff if k == 27: breakout.release()camera.release()cap.release()cv2.destroyAllWindows()

以上就是python 使用OpenCV進行簡單的人像分割與合成的詳細內容,更多關于python opencv人像分割與合成的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 欧美性色一级在线观看 | 伊在人香蕉99久久 | 99热在线获取最新地址 | 国内自拍网址 | 国产精品一区在线播放 | 国产成人a福利在线观看 | 一区二区三区视频免费观看 | 欧美性精品hd在线观看 | 亚洲精品区在线播放一区二区 | 中文字幕乱码中文乱码综合 | 日本久久伊人 | 性欧美另类老妇高清 | 一级毛片免费不卡夜夜欢 | 日本欧美视频 | 99久久国产免费 - 99久久国产免费 | 深夜国产成人福利在线观看女同 | 91精品久久久久 | 成人国产亚洲欧美成人综合网 | 国产激情久久久久影 | 成人禁在线观看午夜亚洲 | 久久女同互慰一区二区三区 | 9久9久女女热精品视频免费观看 | 国产高清在线精品一区二区三区 | 美女把张开腿男生猛戳免费视频 | 92午夜国产福利视频1000 | 伊人久久影视 | 中文字幕一级 | 国产免费一级精品视频 | 欧美激情视频在线观看一区二区三区 | 国产剧情一区二区 | 成人一级网站 | 欧美日韩精品一区二区三区不卡 | 欧美va免费大片 | 欧美日本一道高清二区三区 | 国外成人在线视频 | 免费观看欧美成人h | 久久精品国产99久久香蕉 | 日韩免费一级毛片 | 国产永久在线视频 | 久久精品国产欧美成人 | 日韩一级欧美一级毛片在 |