国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

python - 關于NumPy數組操作的問題

瀏覽:159日期:2022-06-26 18:57:18

問題描述

[’000001_2017-03-17.csv’, ’000001_2017-03-20.csv’, ’000002_2017-03-21.csv’, ’000002_2017-03-22.csv’, ’000003_2017-03-23.csv’, ’000004_2017-03-24.csv’]

numpy數組,總共有幾個萬個元素。現在想保留每個元素前面的編號000001之類的,并且去掉重復,只保留唯一的一個編號。結果應該是[’000001’,’000002’,’000003’,’000004’]除了用for語句實現外,有沒有更高效的辦法?

問題解答

回答1:

寫個NumPy的吧~

python3

>>> import numpy as np>>> a = np.array([’000001_2017-03-17.csv’, ’000001_2017-03-20.csv’, ’000002_2017-03-21.csv’, ’000002_2017-03-22.csv’, ’000003_2017-03-23.csv’, ’000004_2017-03-24.csv’])>>> b = np.unique(np.fromiter(map(lambda x:x.split(’_’)[0],a),’|S6’))>>> barray([b’000001’, b’000002’, b’000003’, b’000004’], dtype=’|S6’)

還可以這樣寫:np.frompyfunc’|S6’是以6個字節存儲字符串

’<U6’是以6個小端序Unicode字符存儲字符串

>>> b = np.array(np.unique(np.frompyfunc(lambda x:x[:6],1,1)(a)),dtype=’<U6’)>>> barray([’000001’, ’000002’, ’000003’, ’000004’], dtype=’<U6’)回答2:

綜合兩位仁兄的寫法@同意并接受 @xiaojieluoff

如果編號長度固定是前六位,最快的寫法下面第一種最快

import timelst = [’000001_2017-03-17.csv’, ’000001_2017-03-20.csv’, ’000002_2017-03-21.csv’, ’000002_2017-03-22.csv’, ’000003_2017-03-23.csv’, ’000004_2017-03-24.csv’] * 1000000start = time.time()data = {_[:6] for _ in lst}print ’dic: {}’.format(time.time() - start)start = time.time()data = set(_[:6] for _ in lst)print ’set: {}’.format(time.time() - start)start = time.time()data = set(map(lambda _: _[:6], lst))print(’map:{}’.format(time.time() - start))start = time.time()data = set()[data.add(_[:6]) for _ in lst]print(’for:{}’.format(time.time() - start))耗時:dic: 0.72798705101set: 0.929664850235map:1.89214396477for:1.76194214821回答3:

使用 map 和匿名函數

lists = [’000001_2017-03-17.csv’, ’000001_2017-03-20.csv’,’000002_2017-03-21.csv’,’000002_2017-03-22.csv’,’000003_2017-03-23.csv’, ’000004_2017-03-24.csv’]data = list(set(map(lambda x:x.split(’_’)[0], lists)))print(data)

輸出:

[’000003’, ’000004’, ’000001’, ’000002’]

運行下面代碼可以看到 , 在 6百萬 條數據下,map 比 for 快了 0.6s 左右

import timelists = [’000001_2017-03-17.csv’, ’000001_2017-03-20.csv’, ’000002_2017-03-21.csv’, ’000002_2017-03-22.csv’, ’000003_2017-03-23.csv’, ’000004_2017-03-24.csv’] * 1000000map_start = time.clock()map_data = list(set(map(lambda x:x.split(’_’)[0], lists)))map_end = (time.clock() - map_start)print(’map 運行時間:{}’.format(map_end))for_start = time.clock()data = set()for k in lists: data.add(k.split(’_’)[0])for_end = (time.clock() - for_start)print(’for 運行時間:{}’.format(for_end))

輸出:

map 運行時間:2.36173for 運行時間:2.9405870000000003

如果把測試數據擴大到 6千萬, 差距就更明顯了

map 運行時間:29.620203for 運行時間:33.132621

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 国产91美女 | 欧美成人艳星在线播放 | 日本高清视频免费在线观看 | 亚洲成aⅴ人片在线影院八 亚洲成av人片在线观看 | 久久久国产乱子伦精品 | 色视频一区二区三区 | 久久精品视频8 | 91免费视| 欧美性生交大片免费看 | 成人性色生活影片 | 男人天堂中文字幕 | 国产精品亚洲成在人线 | 女子张开腿让男人桶视频 | 97超视频在线观看 | 国产精品国产自线在线观看 | 亚洲人成高清毛片 | 国产一区二区三区成人久久片 | 亚洲欧美日韩高清 | 欧美毛片 | 国产全部理论片线观看 | 国产成人精品综合久久久软件 | 亚洲一区二区三区免费在线观看 | 寡妇一级a毛片免费播放 | 久草网站 | 免费看三级毛片 | 男女晚上爱爱的视频在线观看 | 色久视频| 国产亚洲一区在线 | 亚洲高清在线观看 | 色天使影院| 国产一级淫片a免费播放口之 | a级毛片在线播放 | 九九视频精品在线 | 波多野结衣免费免费视频一区 | 色综合夜夜嗨亚洲一二区 | 日本韩国欧美在线观看 | 国产韩国精品一区二区三区久久 | 欧美一区二区在线观看 | 狠狠色狠狠色狠狠五月ady | 亚洲日产综合欧美一区二区 | 99精彩免费观看 |